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Abstract

We develop a wave-based tomographic imaging algorithmdoapen a single rotating
radially outward oriented transducer. At successive argiocations at a fixed radius, the
transducer launches a primary field and collects the battksed field in a “pitch/catch” oper-
ation. The hardware configuration, operating mode, andatdlaction method is identical to
that of most medical intravascular ultrasound (IVUS) systelVUS systems form images of
the medium surrounding the probe based upon ultrasoni@Bssaising a straight-ray model
of sound propagation. Our goal is to develop a wave-basedimgalgorithm using diffrac-
tion tomography techniques. Given the hardware configumadind the imaging method, we
refer to this system as “radial reflection diffraction tomegghy.” We consider two hardware
configurations: a multimonostatic mode using a single ttaner as described above, and
a multistatic mode consisting of a single transmitter andyaerture formed by multiple re-
ceivers. In this latter case, the entire source/receivertage rotates about the fixed radius.
Practically, such a probe is mounted at the end of a cathetemaking tube that can be in-
serted into a part or medium with the goal of forming imageshef plane perpendicular to
the axis of rotation. We derive an analytic expression ferriultimonostatic inverse but ul-
timately use the new Hilbert space inverse wave (HSIW) digorto construct images using
both operating modes. Applications include improved IVdgging, bore hole tomography,
and non-destructive evaluation (NDE) of parts with exgttcess holes.



1 Introduction

Consider a wave-based tomographic imaging tool consistirggsingle transducer rotating about
a fixed center. The transducer is oriented such that it laesélds radially outward. At each
angular location, the transducer launches a primary fietcatiects the backscattered field in a
“pitch/catch” operation. This configuration, in which agi@ transducer acts as both source and
receiver at multiple spatial locations, is knownrasltimonostatic The configuration is shown in
Figure 1(a). One may also consider an annular array of fbeegsttucers. In succession, each trans-
ducer launches a primary field and the backscattered fiel@&suored on all the transducers. This
configuration, with multiple spatially diverse transmigt@nd receivers, is multistaticoperating
mode and is shown in Figure 1(b). A second multistatic coméijon, presented in Figure 1(c),
consists of a rotating sub-aperture formed by a single tnétex surrounded by multiple receivers.
At each angular location, the transmitter launches theamyrfield and the backscattered field is
measured on all receivers.

The goal of this tool is to use inverse wave techniques tongicoct, that is, to form images,
of the medium surrounding the probe, in the plane perpefatitoi the axis of rotation. Given the
arrangement of transducer(s) at a fixed radius collectifigated scattered fields, we refer to this
as aradial reflectionconfiguration. We use the diffraction tomography[1, 2] t@gle, based upon
a linearized scattering model, to form images. Thus, gienphysical transducer configuration
and the mathematical method used to invert the scatteriagiall the algorithnradial reflection
diffraction tomographyRRDT).

When operating in a multimonostatic reflection mode, a spigtwide band, that is a fre-
guency diverse, incident source must be used because shaseifficient spatial diversity to form
images of the surrounding medium. The planar reconstnudtas two spatial variables, by the
“Golden Rule” of tomography[3], the measurement systemtrthen have at least two free pa-
rameters. Angular location is one and incident source #aqu is the other. Conceptually, the
forward scattering process maps the two spatial variadies mhysical object into the angular
location and frequency parameters of the measured field.

Practically, such a probe is mounted at the end of a catheseraking tube that can be inserted
into a part or medium with the purpose of forming images oflame perpendicular to the axis of
rotation. Applications include intravascular ultraso@idJS)[4], bore hole tomography, and non-
destructive evaluation (NDE) of parts with existing acdeskes. We seek a wave-based imaging
algorithm rather than a straight-ray B-scan [2] algorithimich is used, for example, in IVUS
systems. A wave-based inversion more accurately desc¢hbgshysics of wave field propagation.

In the next section, we develop the forward linearized rmamostatic scattering model. We
initially develop a three-dimensional model. As we wishyweger, to form images in a plane
normal to the probe axis, we specialize the model to 2.5-dgo&s assuming no variation in
that is, along the axis of the catheter. In Section 3, we dgvéle RRDT Fourier Diffraction
Theorem [1, 2] (FDT) which governs how the medium’s spatdcirum is sampled by the for-
ward measurement process. The RRDT FDT dictates the resoloft the reconstruction. We
develop an analytic expression for multimonostatic inkersn Section 4. This inverse, however,
proved impractical to implement numerically. In its plaess use the new Hilbert space inverse



wave (HSIW) algorithm [5] outlined in Section 5 to achieveaiging algorithms not only for the
multimonostatic configuration but also for the multistatomfigurations.

Due to the heavy computation nature of the HSIW, a trade-afftrbe made between the num-
ber of transducers and frequencies used in the reconstnyeind the quality of the reconstructed
image. Ideally, an aperture consisting of a 360 degree anamiay would yield the best image.
Practically, it is currently not possible to construct sadully wired array in, for example, a 0.25
mm IVUS probe. Thus, we study rotating sub-apertures sugiresented in Figure 1 (c), and
compare reconstruction results to the single multimoriezstanfiguration.

As explained above, when operating in a reflection mode, rtieging mathematics dictate
that spectrally wide band pulses must be used. The rangkitiesoof the reconstructed image
is proportional to the number of frequencies used in thensiraction. Under the Hilbert space
inverse wave algorithm, however, increasing the numberegfuencies and transducers, increases
the complexity of the reconstruction, the size of the intdnary data files, reconstruction time,
and computer memory requirement. Thus, the trade-off betwemputer resources and resolution
must also be considered.

We initially study these issues in the proof-of-principlegented in Section 6 where we re-
construct scattered fields obtained from a simulation bagea the linearized forward scatter-
ing model of Section 2. The simulated medium consists of Ectbn of point scatterers. We
compare the multistatic and multimonostatic configuragiohn Section 7, we provide a more
rigorous test of the HSIW algorithm by inverting data ob&rfrom Lawrence Livermore Na-
tional Laboratory’s acoustic/elastic finite-differenamé-domain propagation and scattering code,
E3D[6, 7, 8, 9, 10, 11]. We simulated a medium with two scatteobjects whose physical prop-
erties varied from 5% below the background to 15% above iaiAgve compare multimonostatic
and multistatic configurations. Conclusions are preseint&gction 8.

2 Multimonostatic Forward Scattering Model

We develop here the linearized forward scattering modevVatéon for the multimonostatic con-
figuration. We are interested in imaging an area surrounthegprobe in the plane normal to
the axis of rotation. The geometry is that of Figure 2. Theddacer location is specified by
ro = Ry (cos by, sin ) whereR, is the probe radius, a constant. At each angular locafigrthe
transducer launches the primary field radially outward theomedium and measures the reflected
scattered field. The wave propagation and scattering isrgedeéby the Helmholtz equation,

V2 + B (0)] (r,w) = —p(r,w), (1)

wherer = r (cos 6, sin ) is the spatial coordinate of a point in the surrounding mexiu is the
temporal frequencys(r) is the wavenumber of the medium(r, w) is the total field, ang(r,w)
is the incident pulse temporal spectrum.

The derivation is simplified by rearranging Egn. 1 to remdwe dpatial inhomogeneity in the
scattering operator in the left hand side. We add the backgtovavenumbet,(w) = w/vy, to



both sides of Egn. 1 and move the inhomogeneous term to thiehand side to obtain,

(V24 B p(r,w) = —p(r,w) = [F(r) = K(w)] ¢(r,w), )

Define theobject functioras

o(r) = el 1, (3)
and express Eqn. 2 as

{V2 + k(ﬂ Y(r,w) = —p(r,w) — ki(w)o(r)y(r,w). 4)

The second term on the right hand side is known as#éwee®ndary sourceshich creates the scat-
tered field. We may use Green’s theorem[12] to cast the diifial equation of Eqn. 4 into an
integral equation via

VRw) = [dr GR1,w) plr,w) + k() [ dr GR,1,w) ofr) (), (5)

where the Green function is
. giko(w)[R—r] .
(R,r,w) = m (6)

The first integral in Eqn. 5 is therimary field «/"“(R, w). Subtracting it from the total field yields
thescattered field

PR w) = Y(R,w) — P (R,w) = k;g(w)/dr G(R,r,w) o(r) Y(r,w).

An expression for the measured scattered field is obtaineshwif* (R, w) is evaluated on the
measurement surface),

¢scatt(r0’w) = ]{T(Q)(Ld)/dr G(I‘Q,I‘,W) O(P) ¢(r7w>' (7)

Given the scattered field, the data, on the measurementsurfa= (R, 6,) V 0o, we wish to
invert Eqn. 7 to reconstruct an estimate of the scatterindiune, o(r), in the plane perpendicular
to the axis of transducer rotation. The equation is nonfimethat the total field which is the sum
of the incident and scattered fields, appears under theraltalfe may simplify this if we assume
the medium is weakly scattering and that the first Born appraton holds. We then neglect the
scattered field term and express Eqn. 7 as

JSBcatt<r07w) = kg(w) /dr G(r07 r,w) O(I') winC(r’w)’ (8)

where we use th& subscript to indicate the Born approximation has been uaedurther assume
the incident field is the result of a point source locatedyaso thatp(r,w) = P(w) 6(rg — r),



where P(w) is the incident pulse spectrum. We model neither antenneactaistics nor beam
pattern. With this assumption, the incident field is,

Y (r,w) = P(w)G(ry,r,w),

and Eqn. 8 reads

U row) = P) kW) [ dr G(rorw) ofr), ©

where the squared Green function is a result of the transnaittd receiver being co-located. Using
Eqn. 6, we explicitly express the forward scattering model a

12k0 )|ro—r|

5 (rg,w) = / dr S——— o(r). (10)
o — r|
The squared Green function is problematic in the developiem inverse scattering expression
since the diffraction tomography technique requires araegn of the integral kernel in a series
along the measurement surface. We simplify Eqn. 10 follgvértechnique used by Norton and
Linzer[13]. We first define theveighted scattered fielas

z2k0 )ro—r|

47
scatt 2 = scatt — /d 11
w (rOJ w) P(w)k:g(w) B Io,w 47T |I‘0—I“ (I‘), ( )
and then differentiate it with respecttg(w),
9 ei2k0(w)|ro r|
scatt 2 — Z_ /d
dho(w) VW (0 20) = g [ e ol
= 2 /dr G(ro,r,2w) o(r). (12)
For notational convenience, we define
— d scatt d scatt
¢(r0,2w) = dk‘O(w) W (1'0,2(.{}) = U()% W (r0,2w), (13)
and express Eqn. 12 as
O(ro,2w) = i2 / dr G(ro, r, 20) o(r). (14)

Egn. 14 is our forward scattering model in three dimensidiace our goal is to invert this
eqguation to reconstruct the medium in a plane perpenditoltire axis of rotation, we simplify
this further, in the next section, by assuming the objeatfiom,o(r), is independent of the vertical
(2) coordinate. This is known as a “2.5-dimensional” problem.



2.1 2.5-Dimensional Problem

In cylindrical coordinatesy = (r, 6, z) and the measurement surfaceris= (R, 6, z0) for Ry
fixed and0 < 6, < 2. Thus the volume integral of Eqn. 14 becomes

o(rp,2w) = i2 /OOO rdr /O27r df o(r,0) /j:o dz G(rg,r,2w). (15)
The distance between the observation paifitand the scattering point is given by
ro—r° = R2+ (20— 2)°,
where the planar component of the distance is
R*> = Ry +7r®—2Rgrcos (6 —0).

With this definition, we note that theintegral of the Green function reduces to
/_O:O dz Glro,r,20) = ZHO )(2ko(w)R),
so that Egn. 15 reads
Bro,20) = —3 [ rar 02” d0 o(r, 0) H (2ko(w) R). (16)

This is the 2.5-dimensional forward scattering model. it ba interpreted as a mapping from the
object’s two-dimensionalr, §) space into the measured data’s two-dimensiofialy) measure-
ment space. In the next section, we develop the equivalénédiourier Diffraction Theorem [1, 2]
(FDT) for this measurement system. The FDT determines tagapesolution of the reconstruc-
tion by showing what part of the object’s spatial spectrusaisipled by the measurement system.

3 Fourier Diffraction Theorem

The Fourier Diffraction Theorem (FDT) relates the one-disienal spectrum of the measured
data along the measurement surface, to the planar (2-diomatsspatial spectrum of the object
function. We begin the derivation by replacing the Hankeltion in Eqgn. 16 with the expansion,

H§Y (ko(w)R) = Z T (ko(w) Ro) HD (ko (w)r) ™00=0)
whereR, < r. Substituting this into Eqn. 16 yields
27 .
O(ro,20) = —3 L s / Tdr/ d6 o(r,0) J,(2ko(w) Ro) HO (2ko(w)r) €mC0=0 . (17)

n=—oo



We now Fourier expand the object and measured field funcatorsy the measurement surface
using following transform pairs,

on(r) = % /()%de o(r,0) =0, (18)
o(r,0) = fj on(r) ™, (19)
and
Gn(2) = o 02”d90 b(ro, 20) e, 20)
or02) = 3 Gu(2) e 21)

Using Eqn. 20 to transform Eqn. 17, yields

1 21 . 1 o0 0o
| dbo oo, 20) e = D IRACLIBLY /0 rdr HO (2ko(w)r)
27 . 27 .
/ dé o(r, ) e~ / dfy ¢l (22)
0 0

We use Egn. 18 and

1 2 .
— [ dfy et = 5,
2 Jo
to reduce Eqn. 22 to
Om(2w) = —7mJp(2ko(w)Ro) /Oordr HWY (2ko(w)r) o (r). (23)
0

Inverting Eqn. 23 to obtain the transform of the object fimtto,,(r), is not possible because no
orthogonality relation exists for Hankel functions. If weake the assumption, however, that the
object,o(r, 8), is real we have from Eqn. 18 that

o , (r) = on(r).
Using this and the property of Hankel functions,

(=)™ HY (2ko(w)r) = HW(2ko(w)r),

m

we may solve fow,,(r) by observing that

Om(2w) + (=1)"¢", (2w) = =27 Jn(2ko(w)Ro) /OOO rdr Jpm(2ko(w)r) om(r),  (24)



results in a Bessel transform of the object,

om(2ko(w)) = /OOO rdr Jp (2ko(w)r) 0 (1), (25)

which is invertible. Using Eqn. 25, we solve Eqgn. 24 for thgegbBessel transform,

1
2 J(2k0(w) Ro)

O (2Ko () |6 (20) + (= 1), (20)] (26)

Explicitly expressing Eqn. 26 in terms of the measured fiekelpbtain the “Fourier-Bessel Diffrac-
tion Theorem” for RRDT:

21}8 d |1 (Ypw) o, (0)
on(Zho@)) = =G o Re) @lﬂm) P )] 27)

We believe it is more intuitive to relate the Fourier-Bessmhsform of the object to its conventional
two-dimensional Fourier transform. We do so in the nextieact

3.1 The RRDT Fourier Diffraction Theorem

We wish to relate the Fourier-Bessel object transform of.2gnin the(k, m) wavenumber/angular
index space to a continuous variable wavenumber/angledt@prace. The relation is developed in
Appendix A. We substitute Eqn. 27 into Egn. 66 of Appendix@pbtain the Fourier Diffraction
Theorem for RRDT,

o0

O(2ko(w),0) = D (=)™ ™ 0p(2ko(w)),

m=—0o0

B 5 & (=)mem™ d (1 (W) | P, (w)
= 2 ) T (20 (@) Ro) %lﬁ(P(w) P )] (28)

m=—0oQ

where the Fourier space polar paiky(w), ) are related to the Fourier space Cartesian pair
(k;, K,) via Eqn. 63.

This relationship shows that at each spatial spectrum an¢pdation,¢, the locus covered in
the object’s spatial spectrum is a radial lidg(w), that extends over the temporal spectral band-
width of the pulse. When all angular locations are combiriee area is a torus whose inner and
outer radii are proportional to the lower and upper pulsetspm cutoff frequencies, respectively.
If, for example, the pulse spectrum has a lower cutofbpfand an upper cutoff af;, the inner
and outer radii of the torus are given B¥,(w;) and2ky(wy ), respectively. This shown in Fig-
ure 3. The implication of this relationship is that radiadakition (alternatively, range resolution)
is related to the spectral bandwidth of the incident fiela whder the bandwidth, the greater the
resolution.



4 Analytic Multimonostatic Inverse

We use the orthogonality of Bessel functions to invert Edntd?obtain the transform of the object
function:

Pm(2w) + (=1)"¢",,(2w)
Jm(Qk’() (u))Ro)

on(r) = —— [ hofw)dko(e) l ] Jn(Zho(@)r).  (29)

Combining Eqgns. 19 and 13 with Eqn. 29 yields the reconstrct

6(r0) = —8u 3 e /Ooowdw%[i (ﬁg)ﬂpﬁg)ﬂ anm(éi’zif;zz).(so)

m=—0oQ

This analytic inversion has proved impractical to implemenmerically. The reciprocal of
the Bessel function results in poles along the real frequemcs obliging a contour integral. We
were unsuccessful, however at identifying a contour in Wigieery function within the integrand
remained finite. This compelled us to seek a purely numesigiition to the inversion problem.
We used the Hilbert space wave inversion algorithm develdqyyeDevaney [5], and summarize it
in the following section.

5 Hilbert Space Wave Inversion

The Hilbert space inverse wave (HSIW) algorithm permitscuddvelop an inverse for any geom-

etry with any combination of sources, receivers, and fraqigs. Because we have this flexibility,

we develop the HSIW theory for the most general multistatiicle band case where we have

spatial diversity in both the sources and receivers, asageltequency diversity. In an actual ra-

dial reflection device such as an intravascular ultrasounligy the data are collected at discrete
angular locations. We denote by

R! = Ry(cosf,,sinb,) (31)

the transmitter locations whetg = nAfsrcforn = 0,1,---, Nsrc — 1 where Nsrc = 27/ A6.
Similarly, the receiver locations are given by
R, = Ry(cosb,,,sinb,,) (32)

m

wheref,,, = mAbdrcy for m = 0,1, -+, Nrcy — 1 whereNrcy = 27/ Abreyv.

For each source, the receiver(s) record the backscattetddaB a time series that is digitized
for processing. Fourier transforming the time series dasalts in the spectrum of the measured
wave form at discrete frequencies. The forward scatterijuzton under the Born approximation
with both spatial and frequency diversity is

R Ry w) = Pla) K@) [ d GR), v, w) o) GO Riw),  (39)



wherew;, [ = 0,1,---, Ny — 1 are the discrete frequencies aNg is the number of frequencies in
the pulse band width. For the multimonostatic case of Eqthi9reduces to

FURLw) = Plwr) K(wr) [ de GHRL Y, w) ofr)

The HSIW interprets Eqn. 33 as a mapping fromwoatinuous object spade adiscrete mea-
surement spacé he object space is the physi¢al y) space of the object function. The measure-
ment space consists of the discrete angles and temporakfneggs at which the scattered data are
collected. The scattering operator projects the objeat treg measurement space. We define the
forward propagation or projection kernel as

H*(I') = P(wl) kg(wl) G(R:n, r,wl) G(I‘, Rf”wl), (34)

wherell(r) is aJ = (Nsrc x Nrcv x Ny) element column vector. Mathematically, the projection
is represented as an inner product between the object fdumatid the kernel via,

D = / dr T (r) o(r) = (I, 0), (35)

whereD is a.J element column vector where each element represents apartsource, receiver,
and frequency combination. Symbolically, we define the toxhscattering operatok, as

K[ = / dr T (r) [, (36)

The HSIW is a method used to derive an inverse of this operdonsider the singular value
decomposition (SVD) of:

K = USVT, (37)

where the columns df form an orthonormal set of column vectors, which span the measured
data space, and the componentd/oform an orthonormal set of vectors;(r), which span the
object spaceS is a diagonal matrix of singular values;. We wish to emphasize that the are
column vectorsvhere as the;(r) arecomplex functions af. The set of normal equations for this
singular system are

Kvj(r) = ojuy, (38)
K'u; = ojvi(r), (39)
KK'u; = o;Kv(r) = oluy, (40)
K'Kvj(r) = o0;K'u; = olvj(r). (41)

The inversion goal is to estimate the object function of E2given the measured dataiin
We do so by expanding the object function in terms ofif{e),

J-1
o(r) = Zaj v;(r), (42)

10



where theo; are constant coefficients to be determined. Substitutingotyiect expansion into
Egn. 35, we obtain,

J—1 J—1
/ dr TT* (r) Zoaj vi(r) = Zjoaj / dr IT*(r) v;(r). (43)

Applying the definition of theK operator in Egn. 36 to Egn. 38, yields an expression for the
integral of Eqn. 43,

Kv; = /dr II*(r) vj(r) = ojuy, (44)
which reduces Egn. 43 to
J—1
D = ZOéj O'j Uj. (45)
j=0

Using the orthogonality of the; vectors, we may solve for the unknown as follows:

ZO‘J UJUUJ = ZO‘J 0j 05 = a0y, (46)
resulting in
'D
o = = (47)
0;

We now require expressions for the adjoint of the forwardtedag operatorx', and the sin-
gular values and singular vectoes, «;, andv;(r). Consider the following inner product equation
which defines the adjoint,

<u,Kv> = <KTu,v>. (48)

Using the definition of the forward scattering operator fregn. 36, we have

T/dr I (r /dr (T (x)) () (49)

Comparing the right hand sides of Egns. 48 and 49, we obtaifotlowing definition of the adjoint
of the forward scattering operator:

K] = []-17(x). (50)

Theo; andu; are determined by solving the eigenvalue equation of Eqrfiodfed by the outer
product of the forward scattering operator with its adjoiBkplicitly, the outer product is repre-
sented by

( / drH*(r)HT(r)> w = otu, (51)

11



which is aJ x J eigenvalue equation of the fordx = Az. Thell(r) vectors are known
analytically and can be evaluated numerically. It followattthe elements of the outer product
matrix can be computed numerically and the resulting systeived numerically for the? and
u;. Given these, we solve far; (r) using Eqn. 39,

vi(r) = —I'(r)u; (52)

I (r) uju}D. (53)

As described above, thé&(r) vectors of Eqn. 34, and outer products and eigenvalues affdgn
are computed numerically. The system is inherently illgdibaned due to the limited aperture of
the measurement system which only measures part of theemhfield, and due to the loss of
the evanescent field information. Thus, some of the eigeaﬂadrf, are close to zero. Those
eigenvalues and their corresponding eigenvectors deterthe rank of the outer product matrix,
and they must not be used in the reconstruction of Eqn. 53. disie must be made on the
number of singular values/vectors to use. We have chosesetohebest rank Napproximation.
We compute the ratio

R(N) = /4 (54)

where we assume the singular values are arranged from sirtallargesto? < o? < ... <3 _,.
Plotting R(NN), we graphically identify the point at which the functionrésato rise rapidly. The
index of the singular value at which this occurs, we label@asWith this value determined, our
final reconstruction is
|
o(r) = — " (r) wjulD. (55)
Jj=Jo 9;

—

Our experience reconstructing both simulated and expetalg collected scattered field data
have shown that this criterion works consistently well.

The HSIW is extremely flexible in that it allows any transducenfiguration and any number
of frequencies to be used in forming the reconstruction. disadvantage is the potentially large
amount of computer resources required for processing. @ongpthe outer product of Eqn. 51
and its eigenvalues is time consuming for high resoluti@emstructions. Short term disk storage
space for thél(r) vectors of Egn. 34 was approximately 2Gb for the reconstostof Section 7.

In the next section, we present the results of a proof-afgypie example based upon the exact
Born approximation scattering model of Eqgn. 8.

12



6 Proof-of-Principle

Our proof-of-principle consists of two radial reflectiommsilations run under the Born approxi-
mation of Eqn. 8. The geometry, shown in Figure 4, consistiivefpoint scatterers at a fixed
radius but with increasing angular separation so as to @elaie angular resolution test. The first
simulation was performed using a multimonostatic opegatiode with 84 transducers and 100 re-
construction frequencies, the second used a multistaticabipg mode with 20 sources co-located
with 20 receivers and 21 frequencies. These numbers wereted|so that in both cases the num-
ber of elements/, in the projection kernel of Eqn. 34, is 8400. This was donerder to equalize
the comparison of the reconstruction results and minimigerahmic differences. We did not
model any shadowing due to the probe. That s, fields launahéfbr received by transducers 180
degrees away from a scatterer were able to propagatedtoifiescatterer. The forward scattered
field is computed via

S—1
sBcat(RZwauwl) - P(Cdl) kg(wl) Z G(R:n,Xs7u)l) G(X87 R‘fwwl)ﬂ (56)
s=0

whereS is the number of point scattereis, is the location of the-th scatterer, an@(r,r’, w) =
(1/4) Hél)(/-co(w)|r — 1'|) is the two-dimensional Green function.

The incident pulse used in the simulation is described byithederivative of a Gaussian, or
“DOG” pulse, given by

pt) = —euwy (t —to) el (57)

wherew, = 27 fy and f; is the peak frequency of the pulse in Hertz. The pulse is ptede
in Figure 5(a). Figure 5(b) and (c) show the pulse spectruth tiie frequencies used in the
multimonostatic and multistatic reconstructions, resipety. Figure 6 shows the singular value
ratio, R(V), of Eqn. 54. The selection of the number of singular valuess® was performed
manually and the threshold is shown in the figure. The muliostatic reconstruction used 5880
of the 8400 eigenvalues (70%), and the multistatic requadeaD (25%).

The reconstructions are shown in Figure 7. The multimonicstaconstruction reveals better
resolution and somewhat better contrast over the multsttonstruction. This reflects the greater
number of frequencies used in the reconstruction. As showigiure 3, the more frequencies used
results in a larger area in the object’s spatial spectrumgogiconstructed. For point scatterers, the
multimonostatic operating mode is sufficient. The resultfhie next section demonstrate that this
mode is insufficient for imaging extended scatterers unekdistic wave propagation conditions.

7 Full Wave Simulation

We performed a two-dimensional finite-difference time-égam(FDTD) simulation of wave prop-
agation in a domain similar to that of the proof-of-prinepxample. We used E3D, an ex-
plicit 2D/3D elastic/acoustic propagation code desigradnfiodeling seismic waves, developed
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at Lawrence Livermore National Laboratory [6, 7, 8, 9, 10]. 1The code simulates full wave
scattering and requires as inputs a longitudinal velodgyrithution, a shear velocity distribution,
and a density distribution. In this case, unlike the pralfanciple, the probe was included in the
simulation, shadowing fields from transducers and scattevigh large angular separation.

The FDTD simulation domains are shown in Figure 8. The domeamsist of a homogeneous
background with two elliptical inclusions. One inclusistongitudinal velocity and density are
15% above the background; the other’s are 5% below. Therm vamation in shear velocity. The
dashed line indicates the transducer outline.

As in the proof-of-principle example, we performed both altimonostatic and multistatic
simulation. The former used 50 transducer locations withr&2onstruction frequencies resulting
in J = 50 x 120 = 6000 elements in the forward propagation kernel. The latter &fedource
locations and a receiving aperture of 15 transducers caht@oout the active source. As the
transmitting element rotated, so did the receiving apertas indicated in Figure 1(c). The exact
multistatic configuration for this simulation is shown irgkre 9. The multistatic reconstruction
used 8 frequencies to achieve/a= 50 x 15 x 8 = 6000 element kernel. As in the proof-
of-principle example, we used kernels with identical numiiieelements to minimize variability
when comparing the quality of the reconstructions. The Rtran configurations and parameters
are listed in the first two lines of Table 1.

The full wave simulations used the same “DOG” pulse as thefpwéprinciple example. The
frequencies used in the reconstruction for each of the twesare presented in Figure 10. Again,
we used the best rank’ approximation to determine the number of singular values\attors
to use in the reconstructions. The singular value ratiQy ), and the singular value distribution
are plotted in Figure 11. The multimonostatic case requir2@0 (71%) of the singular values,
and the multistatic required 1020 (17%). The magnitude efrétonstructions are shown in Fig-
ure 12. The high-pass nature of reflection mode diffractiondgraphy as represented in Figure 3
is demonstrated in the multimonostatic reconstructionigfife 12 (a) where the edges of the scat-
tering objects are clearly highlighted. There is, howeaerazimuthal ambiguity resulting from
the use of only one transducer: off radial axis scatteringaaly be resolved to within a fixed
range from the transducer. Thus, off radial axis scattdimigs the usefulness of multimonostatic
operation. Better azimuthal localization is achieved wimeme receiving transducers are included,
widening the agular receiving aperture, permitting thelgson of the azimuthal ambiguity. This
is demonstrated in the multistatic reconstruction of Fegi2(b). Observe however, when fewer
frequencies are uses, range resolution is lost.

We studied the receiver number/reconstruction frequeraryetoff further in the three other
multistatic simulations listed in Table 1. We decreasednivaber of receivers and increased the
number of reconstruction frequencies while keeping the sfzhe problem within our computer
resources. The reconstructions are shown in Figure 13. Wigicothat scatterer azimuthal local-
ization improves with the number of receivers but there isss lof radial resolution when fewer
frequencies are used. We conclude that azimuthal resoligtiachieved by increasing the number
of receivers, where as range resolution increases withuhwar of frequencies.
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8 Conclusions

We set out to develop a wave-based tomographic imaging ts#dupon an intravascular ultra-
sound probe model in which a single rotating transducer sthnofies the surrounding medium
and measured the backscattered field. Our goal was to deaelgwe-based inversion algorithm
to image the surrounding medium rather than using the stdri8lacan currently used that are
based upon straight ray sound propagation.

We developed an analytic inverse for the multimonostatiefigoration but were unable to
implement it numerically. We then implemented a purely ntoa¢ inverse based upon the new
Hilbert space inverse wave (HSIW) algorithm. The flexililtf the HSIW is such that it allows
any configuration of transducers and frequencies to be ustiekireconstruction. This permitted
us to test not only a multimonostatic operating mode but@smus multistatic modes.

We concluded that the multimonostatic mode lacks sufficggattial diversity to image cor-
rectly scattering targets, and that scatterer azimutleallitation improves as more receivers are
used and that range resolution improves as more frequesrciassed.

A Relationship Between the Fourier & Fourier-Bessel Trans-
form

We wish to relate the Fourier-Bessel Diffraction TheorenEgh. 27 to the Fourier Diffraction
Theorem so that we may understand how the object’s spataitrspn is covered by the radial
reflection measurement system. In order to do so, we requiedation between the Fourier-
Bessel transform of the object to its Fourier transform. \&esider a two dimensional function
represented in Cartesian coordinates @s y) or in polar coordinates ag(r, #) where we have
the following relationship between the coordinate pairs,

xr = r cosb,

y = 71 sinf. (58)
The Fourier-Bessel transform pair are
1 2 o) .
Fok) = — / db / rdr f(r,0) e ™ J,. (kr), (59)
21 Jo 0
fe) = > " kdk F(k) € T (kr), (60)
m=—o0 0
and the Cartesian Fourier transform pair are,
ki) = [ do [~ dy Fla,y) o, (61)
1 o > i(kpatky
fla,y) = W/_Oodkw/_mdky Fky, k) eikeo+hun), (62)
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The Cartesian Fourier transform pair are cast into polardinates using the following change of
variables,

k. = kcosao,
k, = ksing, (63)
to yield,
2T [e'e] .
Fk,¢) = /O db /0 rdr f(r,0) ¢~ikreos®=6) (64)
1 27 [e'e) .
f0:6) = Gop /0 dé /0 kdk F(k, @) ereos0=9) (65)

To determine the relationship betweElk, ¢) andF;,, (k), we substitute the expansion

e—ikrcose — Z (_Z)m Jm(k’T’) eim@
into Eqn. 64 to find
F(ko) = 3 (=i)"e™ (k). (66)

. 1 p2r , . .
Using / df 'm=m? — 5, we may invert Egn. 66 to find
™ Jo

(=) g

Fm(k) 21 0

do F(k,¢) e™™?. (67)
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Simulation Number of | Number of | Aperture Number of Number of
Configuration Source Receivers | Angle | Reconstruction | HSIW Kernel
Locations Frequencies Elements,J
Multimonostatic 50 1 n/a 120 6000
Multistatic 50 15 100.8° 8 6000
Multistatic 50 15 100.8° 12 9000
Multistatic 50 9 57.6° 21 9450
Multistatic 50 5 28.8° 37 9520

Table 1:FDTD simulation configuration and reconstruction paranste
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Figure 1: Three radial reflection transducer configurations. (a) Theltimonostatic mode: a
single transducer rotates about a fixed center. At each ardatation it launches the primary
field and collects the reflected scattered field. (b) A maliistcase consisting of a fixed annular
array of outward looking transducers. In succession, eaghgdducer launches the primary field
and the reflected scattered field is measured at all the trace. (c) A multistatic configuration
consisting of a rotating aperture.
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Figure 2: Radial reflection geometryR, is the probe diameteg, = R, (cosbp,sinfy) is the
planar location of the transducet,= r (cos 6, sin ) is a point within the surrounding medium.
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Figure 3:Radial reflection Fourier diffraction theorem.

20



15F E
X
X X
10} X y -
5 | .....000 %o, ... |
< Or : : 1
> ] ;

-5+ 00...... ."...o° |
-10} i
_15 C | | | | | | | T

-15 -10 -5 0 10 15 20
X (A,)

Figure 4: Proof-of-principle geometry. Two simulations were pemnied: a multimonostatic run
with 84 transducers which used 100 frequencies for the rgtcoation, and a multistatic run with
20 transducers which used 21 frequencies.
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Figure 5: Proof-of-principle pulse. (a) Time domain derivative of aussian (DOG) pulse. (b)
DOG pulse spectrum with the 100 frequencies used in the mutibstatic reconstruction high-
lighted. (c) DOG pulse spectrum with the 21 frequencies uséte multistatic reconstruction.
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Figure 6: Proof-of-principle singular values. The top plots show #igenvalue ratiosR(N),

of Eqn. 54. The vertical line shows where the selection waderizero” and non-zero singular
values. The bottom plots show the actual singular valueg. highlighted shows those singular
values used in the reconstructions. The (a) column is thémamhostatic case where 70% or 5880
out of 8400 singular values/vectors were used; the (b) colisithe multistatic case where 25%
or 2100 singular values/vectors were used.
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Figure 7: Proof-of-principle reconstructions. (a) Multimonostati(b) Multistatic. (c) Angular
slices through the reconstructions at the radius of thetscats. Thex indicate the actual location
of the scatterers. The multimonostatic case shows betsetugon and somewhat higher contrast
than the multistatic case. This is a consequence of the gr@atmber of frequencies used in the
reconstruction which increased the coverage in the olgesgiatial spectrum.
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Figure 8: Finite-difference time-domain simulation domains. Thendms consist of a homoge-
neous background with two elliptical inclusions. One isatun’s longitudinal velocity and density
are 15% above the background; the other’s are 5% below. Tisame variation in shear velocity.
The dashed line indicates the transducer outline.
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Center
transmitting/receiving
element

Figure 9: The transducer geometry for the FDTD simulations. Thenark the 50 sourc posi-
tions. The circles indicate the active receivers withinrnbtating sub-aperture. For the 15-element
aperture, the aperture angle i$0.8°.
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Figure 10:FDTD pulse spectrum. (a) DOG pulse spectrum with the 12Quiraqies used in the
multimonostatic reconstruction highlighted. (b) DOG pusgpectrum with the 8 frequencies used
in the multistatic reconstruction.
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Figure 11:FDTD simulation singular values. The top plots show the siagvalues ratiosR(N),

of Eqn. 54. The vertical line shows where the selection wadenaistinguishing between the
“zero” and non-zero singular values, thus determining tla@k of the system. The bottom plots
show the actual singular values. The highlighted trace shtiwse singular values used in the
reconstructions. The (a) column is the multimonostatiect®e (b) column is the multistatic case.
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Figure 13:Additional multistatic reconstructions to evaluate thade-off between receiving aper-
ture size and the number of frequencies used in the recaniru Radial resolution increases
with the number of frequencies used, and azimuthal reswluticreases aperture size.
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